Department of Computer Science and Technology, Tsinghua University, Beijing, China
Abstract:Modern science increasingly relies on ever-growing observational datasets and automated inference pipelines, under the implicit belief that accumulating more data makes scientific conclusions more reliable. Here we show that this belief can fail in a fundamental and irreversible way. We identify a structural regime in which standard inference procedures converge smoothly, remain well calibrated, and pass conventional diagnostic checks, yet systematically converge to incorrect conclusions. This failure arises when the reliability of observations degrades in a manner that is intrinsically unobservable to the inference process itself. Using minimal synthetic experiments, we demonstrate that in this regime additional data do not correct error but instead amplify it, while residual-based and goodness-of-fit diagnostics remain misleadingly normal. These results reveal an intrinsic limit of data-driven science: stability, convergence, and confidence are not sufficient indicators of epistemic validity. We argue that inference cannot be treated as an unconditional consequence of data availability, but must instead be governed by explicit constraints on the integrity of the observational process.
Abstract:Traditional object detection systems are typically constrained to predefined categories, limiting their applicability in dynamic environments. In contrast, open-vocabulary object detection (OVD) enables the identification of objects from novel classes not present in the training set. Recent advances in visual-language modeling have led to significant progress of OVD. However, prior works face challenges in either adapting the single-scale image backbone from CLIP to the detection framework or ensuring robust visual-language alignment. We propose Visual-Language Detection (VLDet), a novel framework that revamps feature pyramid for fine-grained visual-language alignment, leading to improved OVD performance. With the VL-PUB module, VLDet effectively exploits the visual-language knowledge from CLIP and adapts the backbone for object detection through feature pyramid. In addition, we introduce the SigRPN block, which incorporates a sigmoid-based anchor-text contrastive alignment loss to improve detection of novel categories. Through extensive experiments, our approach achieves 58.7 AP for novel classes on COCO2017 and 24.8 AP on LVIS, surpassing all state-of-the-art methods and achieving significant improvements of 27.6% and 6.9%, respectively. Furthermore, VLDet also demonstrates superior zero-shot performance on closed-set object detection.
Abstract:Diffusion models have recently set new benchmarks in Speech Enhancement (SE). However, most existing score-based models treat speech spectrograms merely as generic 2D images, applying uniform processing that ignores the intrinsic structural sparsity of audio, which results in inefficient spectral representation and prohibitive computational complexity. To bridge this gap, we propose DVPD, an extremely lightweight Dual-View Predictive Diffusion model, which uniquely exploits the dual nature of spectrograms as both visual textures and physical frequency-domain representations across both training and inference stages. Specifically, during training, we optimize spectral utilization via the Frequency-Adaptive Non-uniform Compression (FANC) encoder, which preserves critical low-frequency harmonics while pruning high-frequency redundancies. Simultaneously, we introduce a Lightweight Image-based Spectro-Awareness (LISA) module to capture features from a visual perspective with minimal overhead. During inference, we propose a Training-free Lossless Boost (TLB) strategy that leverages the same dual-view priors to refine generation quality without any additional fine-tuning. Extensive experiments across various benchmarks demonstrate that DVPD achieves state-of-the-art performance while requiring only 35% of the parameters and 40% of the inference MACs compared to SOTA lightweight model, PGUSE. These results highlight DVPD's superior ability to balance high-fidelity speech quality with extreme architectural efficiency. Code and audio samples are available at the anonymous website: {https://anonymous.4open.science/r/dvpd_demo-E630}
Abstract:Large language models (LLMs) have enabled rapid progress in automatic heuristic discovery (AHD), yet most existing methods are predominantly limited by static evaluation against fixed instance distributions, leading to potential overfitting and poor generalization under distributional shifts. We propose Algorithm Space Response Oracles (ASRO), a game-theoretic framework that reframes heuristic discovery as a program level co-evolution between solver and instance generator. ASRO models their interaction as a two-player zero-sum game, maintains growing strategy pools on both sides, and iteratively expands them via LLM-based best-response oracles against mixed opponent meta-strategies, thereby replacing static evaluation with an adaptive, self-generated curriculum. Across multiple combinatorial optimization domains, ASRO consistently outperforms static-training AHD baselines built on the same program search mechanisms, achieving substantially improved generalization and robustness on diverse and out-of-distribution instances.
Abstract:Robust reinforcement learning methods typically focus on suppressing unreliable experiences or corrupted rewards, but they lack the ability to reason about the reliability of their own learning process. As a result, such methods often either overreact to noise by becoming overly conservative or fail catastrophically when uncertainty accumulates. In this work, we propose a meta-cognitive reinforcement learning framework that enables an agent to assess, regulate, and recover its learning behavior based on internally estimated reliability signals. The proposed method introduces a meta-trust variable driven by Value Prediction Error Stability (VPES), which modulates learning dynamics via fail-safe regulation and gradual trust recovery. Experiments on continuous-control benchmarks with reward corruption demonstrate that recovery-enabled meta-cognitive control achieves higher average returns and significantly reduces late-stage training failures compared to strong robustness baselines.
Abstract:Deep learning systems achieve remarkable empirical performance, yet the stability of the training process itself remains poorly understood. Training unfolds as a high-dimensional dynamical system in which small perturbations to optimization, data, parameters, or learning signals can induce abrupt and irreversible collapse, undermining reproducibility and scalability. We propose a unified dynamical perspective that characterizes training stability as an intrinsic property of learning systems, organized along four interacting dimensions: optimization, environmental/data, parametric, and learning-signal stability. We operationalize this perspective through controlled perturbation auditing of training trajectories, probing how learning dynamics respond to structured disturbances without modifying learning algorithms. Across reinforcement learning and large language model training, we identify three recurring regularities: high final performance is frequently decoupled from training stability; controlled stochasticity consistently buffers learning dynamics across paradigms; and deviations in low-dimensional latent meta-states systematically precede observable performance collapse. Together, these findings establish training stability as a measurable and comparable dynamical property of learning systems, providing a descriptive foundation for studying learning dynamics beyond final performance outcomes.
Abstract:Learning under unobservable feedback reliability poses a distinct challenge beyond optimization robustness: a system must decide whether to learn from an experience, not only how to learn stably. We study this setting as Epistemic Identifiability under Unobservable Reliability (EIUR), where each experience has a latent credibility, reliable and unreliable feedback can be locally indistinguishable, and data are generated in a closed loop by the learner's own evolving beliefs and actions. In EIUR, standard robust learning can converge stably yet form high-confidence, systematically wrong beliefs. We propose metacognitive regulation as a practical response: a second, introspective control loop that infers experience credibility from endogenous evidence in the learner's internal dynamics. We formalize this as a modular Monitor-Trust-Regulator (MTR) decomposition and instantiate it with self-diagnosis, which maintains a slowly varying experience-trust variable that softly modulates learning updates, without exogenous reliability labels or an explicit corruption model. Empirically, in the EIUR regimes studied here, self-diagnosis is associated with improved epistemic identifiability. In reinforcement learning, it enables calibrated skepticism and recovery under systematically corrupted rewards. In supervised learning, it exposes a critical dissociation: performance recovery does not imply epistemic recovery. Accuracy can rebound while internal belief dynamics remain locked-in by early misleading data, a failure detectable only through introspective diagnostics. Together, MTR and self-diagnosis provide an organizing abstraction and a concrete design template for intrinsic reliability assessment in autonomous learning under unobservable reliability.
Abstract:Long-horizon conversational agents have to manage ever-growing interaction histories that quickly exceed the finite context windows of large language models (LLMs). Existing memory frameworks provide limited support for temporally structured information across hierarchical levels, often leading to fragmented memories and unstable long-horizon personalization. We present TiMem, a temporal--hierarchical memory framework that organizes conversations through a Temporal Memory Tree (TMT), enabling systematic memory consolidation from raw conversational observations to progressively abstracted persona representations. TiMem is characterized by three core properties: (1) temporal--hierarchical organization through TMT; (2) semantic-guided consolidation that enables memory integration across hierarchical levels without fine-tuning; and (3) complexity-aware memory recall that balances precision and efficiency across queries of varying complexity. Under a consistent evaluation setup, TiMem achieves state-of-the-art accuracy on both benchmarks, reaching 75.30% on LoCoMo and 76.88% on LongMemEval-S. It outperforms all evaluated baselines while reducing the recalled memory length by 52.20% on LoCoMo. Manifold analysis indicates clear persona separation on LoCoMo and reduced dispersion on LongMemEval-S. Overall, TiMem treats temporal continuity as a first-class organizing principle for long-horizon memory in conversational agents.
Abstract:Semi-supervised remote sensing (RS) image semantic segmentation offers a promising solution to alleviate the burden of exhaustive annotation, yet it fundamentally struggles with pseudo-label drift, a phenomenon where confirmation bias leads to the accumulation of errors during training. In this work, we propose Co2S, a stable semi-supervised RS segmentation framework that synergistically fuses priors from vision-language models and self-supervised models. Specifically, we construct a heterogeneous dual-student architecture comprising two distinct ViT-based vision foundation models initialized with pretrained CLIP and DINOv3 to mitigate error accumulation and pseudo-label drift. To effectively incorporate these distinct priors, an explicit-implicit semantic co-guidance mechanism is introduced that utilizes text embeddings and learnable queries to provide explicit and implicit class-level guidance, respectively, thereby jointly enhancing semantic consistency. Furthermore, a global-local feature collaborative fusion strategy is developed to effectively fuse the global contextual information captured by CLIP with the local details produced by DINOv3, enabling the model to generate highly precise segmentation results. Extensive experiments on six popular datasets demonstrate the superiority of the proposed method, which consistently achieves leading performance across various partition protocols and diverse scenarios. Project page is available at https://xavierjiezou.github.io/Co2S/.
Abstract:We introduce FactorPortrait, a video diffusion method for controllable portrait animation that enables lifelike synthesis from disentangled control signals of facial expressions, head movement, and camera viewpoints. Given a single portrait image, a driving video, and camera trajectories, our method animates the portrait by transferring facial expressions and head movements from the driving video while simultaneously enabling novel view synthesis from arbitrary viewpoints. We utilize a pre-trained image encoder to extract facial expression latents from the driving video as control signals for animation generation. Such latents implicitly capture nuanced facial expression dynamics with identity and pose information disentangled, and they are efficiently injected into the video diffusion transformer through our proposed expression controller. For camera and head pose control, we employ Plücker ray maps and normal maps rendered from 3D body mesh tracking. To train our model, we curate a large-scale synthetic dataset containing diverse combinations of camera viewpoints, head poses, and facial expression dynamics. Extensive experiments demonstrate that our method outperforms existing approaches in realism, expressiveness, control accuracy, and view consistency.